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Abstract:  
Objective: To assess the sensitivity, specificity and accuracy of a digital algorithm based on convolutional neural networks used 
for restoring the lost surface of the skull bones.  
Materials and methods. The neural network was trained over 6,000 epochs on 78,000 variants of skull models with artificially 
generated skull injuries. The key parameters of the algorithm were assessed on 222 series of multislice computed tomography 
(MSCT) of patients with defects of the skull bones, presented in DICOM format.  
Results. For the group as a whole, the sensitivity, specificity, and accuracy rates were 95.3%, 85.5%, and 79.4%, respectively. 
Multiple experiments were conducted with a step-by-step elimination of 3D models in order to find the underlying cause of 
unsatisfactory outcomes of the skull lost surface restoration. Incorrect identification of the defect zone most often occurred in 
the area of the facial skeleton. After excluding series with the presence of artifacts, the mean increase in metrics was 2.6%. 
Conclusion. The accuracy of identifying the reference points (specificity) on a 3D model of the skull by the algorithm had the 
greatest impact on the ultimate accuracy of repairing the lost surface. The maximum accuracy of the algorithm allowing the use 
of the resulting surfaces without additional processing in a 3D modeling environment was achieved in series without the 
presence of artifacts in computed tomography (83.5%), as well as with defects that did not extend to the base of the skull 
(79.5%).   
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Background 

Cranioplasty is a fairly common neurosurgical operation, 
which, as a rule, does not require high-tech equipment in the 
operating room. However, despite their superficial simplicity, 
such interventions may employ advanced medical 
technology. Each defect of the skull bones is unique, which 
explicates the introduction of custom implants into the 
practice of reconstructive neurosurgery starting from the 
mid-1990s. A specialized software environment for three-
dimensional (3D) modeling is required for designing such 
products. These activities are performed by medical 
engineers with competence in the fields of technology, 
medicine, and anatomy [1], or by physicians with skills and 
experience in such programs [2]. Despite the more than 
thirty-year history of custom modeling in neurosurgery, 
specialists employ utilitarian software products that are 
widely used in technical industries: MeshMixer, Blender, 
Autodesk 3ds Max, InVesalius, Geomagic Design X, 
Materialize Mimics and 3 Matic, etc. Existing solutions for 
constructing models of implants are focused primarily on the 
skills of the engineering technologist rather than the 
physician. Hence, on the one hand, medical professionals 
have to learn the basics of working in these programs. On the 
other hand, the strategy for scientific and technological 
development of the Russian Federation approved by the 
Decree No. 642 by the Russian Federation President of 1 

December 2016 commands the need for transition to 
personalized medicine, high-tech health care system and 
technology, advanced digital intelligent manufacturing 
technologies, and the development of big data processing 
systems, machine learning and artificial intelligence. The first 
part of this strategy has already become firmly established in 
practical medicine, and the geography of the use of custom 
implants for repairing defects in the skull bones gradually 
expands [2-4]. At the same time, its second aspect related to 
the medical industry is in most cases at the stage of 
conceptual development. In the course of research activities 
carried out from 2018 at the Ya.L. Tsivyan Research Institute 
of Traumatology and Orthopedics of Novosibirsk, A.P. Ershov 
Institute of Information Systems of the Siberian Branch of 
the Russian Academy of Sciences (Novosibirsk), and 
AcademGene LLC (Novosibirsk), we have developed an 
approach to use neural networks, which made it possible to 
automatically create the lost surface of the skull bones based 
on the patient’s multislice computed tomography (MSCT) 
data. The developed algorithm can be used for designing 
custom implants in clinical practice, which would allow 
integrating the listed strategies into an ecosystem of 
personalized medical devices.  

The goal of our study was to assess the sensitivity, 
specificity and accuracy of the developed digital algorithm for 
restoring the lost surface of the skull bones.  

mailto:smishinov@yandex.ru
https://doi.org/10.15275/ssmj1901034
https://doi.org/10.15275/sarmj.2023.0102


  

 

Mishinov SV 
2 of 5 

 Neurosurgery 

  

 

Saratov Medical Journal, 2023. Volume 4. Issue 1 (March). Article CID e0102 www. sarmj.org 
 

Materials and Methods 

Designing neural network. As a basis for the algorithm 
aimed at constructing the lost surface of the skull, we decided 
to use a neural network using convolutional layers on an 
icosahedral spherical grid (ISG), adapting and improving it 
for the task at hand. The determination of the skull missing 
area was performed at the stage of converting the polygonal 
grid into a distance vector on the ISG. As a result of this 
procedure, the algorithm was determining a set of 
characteristics of the ISG vertices with which the skull defect 
was associated. With this goal in mind, we calculated the 
distances from the vertices of the ISG to the 3D model of the 
skull along the directrices from these vertices to the center. In 
this case, the distances corresponding to the directrices 
falling into the defect area exceeded one (since they traveled a 
distance greater than one from the ISG vertex to the center 
and intersected the surface of the skull behind it) and could 
be associated with the defect area. Small breaks (in terms of 
their area or number of points) that were present on the 
surface due to scanning errors or were natural breaks were 
not considered a defect. The size of the area threshold for 
cutting off such small surface breaks was identified 
empirically.  

Training a neural network. A sample of 70 STL files 
(stereolithography) containing polygonal models of skulls, 
which were previously converted from MSCT DICOM data of 
patients without skull bone defects, was divided into three 
parts: 50 copies for training the neural network, and 10 
copies each for the test sample and validation sample. The 
model was trained to repair surfaces on skulls with artificially 
created damage. Using a sphere of random radius, two spatial 
models of the sphere and the skull were superimposed in a 
random area with a random degree of intersection, thereby 
creating artificial damage. Such approach facilitated the 
training performed on a relatively small sample of data – i.e., 
the same STL model with different localization and diameter 
of the damage was used for training purposes. In total, in the 
course of neural network training, 6,000 epochs were 
completed (each with a sample size of 13 models). 
Consequently, 50 models used for training at the first stage 
yielded 78,000 variants of skulls with artificial damage for 
training the neural network.  

The interface of the developed software is presented in 
the form of a web application 
(https://www.autobone.nprog.ru/), which allows an 
authorized user (surgeon and/or medical modeling engineer) 
using the function of constructing and analyzing a model of 
the reconstructed skull via the Internet. The application is 
based on the previously described digital algorithm.  

Evaluation of lost surface repair using a reference skull. 
This group comprised 13 pairs of DICOM series of patient 
MSCT images. Each patient was represented by two series of 
examinations: the first one was performed prior to 
craniectomy, whereas the second was obtained after it. 
DICOM data were converted into STL models. Then the 
developed algorithm was used for the series with defects to 
model skull repair. The model was then placed into a 3D 
modeling program (Materialize Mimics) to reconstruct the 
lost surface of the skull. A 3D model of the same patient’s 
skull, but without a defect (i.e., a reference skull), was placed 
in this program as well. Then, for the purpose of control, a 
visual assessment of the model’s fit to the reference model 

was performed by highlighting the models in different colors 
and searching for deviations of the model from the reference 
model. To determine the adequacy of the resulting implant 
curvature, we measured the distance from the lower surface 
of the reconstructed skull to the outer surface of the entire 
skull. The actual area of the skull defect was determined in a 
similar way: by placing two volumetric STL models of the 
skull in the same block of a 3D modeling program, fitting 
them with each other, checking the quality of fit, and then 
subtracting the surface of the intact skull from the projection 
of the defect area on the model of the skull with the defect.  

Assessing the accuracy of the digital algorithm. To assess 
the quality of the neural network in terms of automatic 
conversion of MSCT DICOM data into polygonal 3D models, 
automated removal of artifacts in MSCT data, automated 
detection of the defect area in the skull bones, measurement 
of defect area size, and construction of the lost surface of the 
skull, we processed 222 series of MSCT DICOM patients with 
defects of the skull bones using a specialized web service 
(https://www.autobone.nprog.ru/).  

Statistical analysis and criteria for evaluating 
effectiveness. For descriptive statistics, we used the mean and 
standard deviation of the mean (M±σ), the median and its 
lower and upper quartiles (Me [Q1; Q3]), and minimum and 
maximum values of variables analyzed via Statistica 10 
software package. Correct detection of the defect area was 
interpreted as sensitivity. The accurate choice of reference 
points for constructing an implant was categorized as 
specificity. The precise visual curvilinearity of the constructed 
surface was regarded as accuracy. The curvilinearity of the 
implant was assessed as good, satisfactory, or unacceptable. 
In the first case, there was a proper visual curvature of the 
implant (according to the neurosurgeon’s opinion, without 
making any precise measurements), and such curvature did 
not require modification in 3D modeling editors (Figure A). 
In the second case, there was a largely adequate curvilinearity 
(Figure B) requiring minor additional processing in some 
areas of the implant using a 3D modeling environment. In the 
third case, we observed curvilinearity (Figure C) that did not 
fit well to the anatomical region; hence the implant required 
further significant modification.  

 

 
 

Figure. Examples of repairing the lost surface of the skull:  
A – good result; B – satisfactory result; C – unacceptable 
result. 1 – in the lower part of the restored surface; sections 
of the zygomatic arch were selected as reference points; 2 – 
in the lower part, sections of the zygomatic arch and a 
section of the petrous pyramid were selected as reference 
points, which led to a noticeable deformation of the surface 
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Results 

Lost surface repair using a reference skull. In one case out 
of thirteen, a significant deviation in the implant curvature 
was noted (19.77 mm) with a defect area of 43.3 cm2, which 
was due to incorrectly identified reference points for 
constructing the surface. In this case, the highest ratio of the 
curvature maximum deviation of the reconstructed surface to 
the defect area was noted at 0.5%. Due to considerable error, 
this case was excluded to ensure correct statistical processing, 
and the analysis was performed on 12 pairs of 3D models of 
the skull (Table 1). 

As can be seen from the data in Table 1, the maximum 
error of determining the defect area corresponded was 2.3 
cm2, while the mean value of the error and its median did not 
exceed 1 cm2. In two cases, the algorithm determined the 
area to be larger (0.6 cm2 and 2.0 cm2). In other cases, the 
area of the skull bone defect determined by the algorithm was 
on average 1% less than the reference value. The maximum 
surface curvature deviation (3.89 mm) corresponded to a 
defect area of 95 cm2.  

Accuracy of the digital algorithm. During the data loading 
(a total of 222 DICOM series of MSCT examinations), we 
observed a single case without conversion to an STL file (and, 
accordingly, without reconstruction of the lost surface). This 
was due to the small number of sections (less than 100) of the 
skull bones in a series of MSCT, which did not allow building 
a 3D model. In seven cases, the surface was not restored, 
which was caused either by the small size of the defects or 
their location in the area of the anterior wall of the frontal 
sinus with intact posterior wall of the sinus (in these cases, 
the basic mathematical function of searching for a defect by 
projecting vectors with ISG was not performed). 

In 214 cases, loading DICOM data, converting it into an 
STL model, and constructing the lost surface of the skull were 
completed successfully. Methodologically correct 
measurement of the defect area was implemented in 206 
cases; in four MSCT series, the patients had bilateral defects, 
hence the algorithm determined the total area of each defect 
rather than separately for each location.  

In 204 out of 214 cases, the defect area was determined 
correctly (sensitivity = 95.3%). The reference points for 
constructing the lost surface of the skull were accurately 
determined by the algorithm in 183 of 214 cases (specificity = 
85.5%). The results of the lost surface repair were good in 170 
cases, satisfactory in 25 cases and unacceptable in 19 cases. 
Consequently, the overall accuracy of the algorithm was 
91.1%; based solely on good results, it was 79.4%. Taking into 
account that in all cases of good construction of the lost 
surface, the algorithm correctly identified the reference 
points for its construction. Hence, we concluded that the 
accuracy of their determination was the key to adequate 
reconstruction of the skull surface.  

In our study, 20 observations contained artifacts that 
affected the volumetric STL model. Consequently, these 
series were excluded, and 194 studies out of 214 were used to 
evaluate sensitivity, specificity and accuracy. In 188 of 194 
cases, the determination of the defect area was performed 
correctly, and the sensitivity was 96.9%. The reference points 
for constructing the surface were properly determined by the 
algorithm in 170 of 194 cases, hence the specificity 
constituted 87.6%. The results of surface reconstruction in 
162 cases were good; in 20 cases, they were satisfactory; and 
in 12 cases, they were unacceptable. Thus, the overall 
accuracy of the algorithm with the inclusion of the 
satisfactory grade of accuracy was 93.8%, while based on 

solely good results, it was 83.5%. Eliminating models with 
artifacts improved all indicators (Table 2). To test the 
hypothesis that the accurate determination of reference 
points allowed the algorithm modeling a surface with the 
required curvilinearity, we performed an analysis of the 
quality of modeled surfaces only in 170 cases of correct 
determination of reference points. In 160 cases, curvilinearity 
was assessed as good, and in 9 cases, as satisfactory. There 
was a single case of incorrect detection of the defect area (the 
algorithm, in addition to the artificial defect of the skull 
bones, identified the area between the occipital bone and C1 
vertebra as a defect), which did not affect the curvilinearity of 
the generated surface in the area of the true defect of the skull 
bones. Therefore, we concluded that specificity has a greater 
impact on the ultimate accuracy of the algorithm.  

After excluding the series with artifacts, the mean 
improvement in all metrics of the algorithm was 2.6%. The 
best result was achieved when that the reference points were 
correctly identified and the restored surface had good 
curvilinearity.  

When analyzing the causes of incorrect detection of a 
defect in the skull bones (n=10 of the total group with 
n=214), we revealed that every so often this occurred in cases 
of defects extending to the area of the facial skeleton and 
encompassing the frontal sinus and/or orbital area (n=5), as 
well as in the presence of newly formed bone on the dura 
mater surface (n=3). 

 

Table 1. Results of measurements during the experiment 
with a reference skull 

Parameter M±σ Me [Q1; Q3] Min – Max 

Defect area, cm2 68.87±39.85 69.35 [37.25; 

88.80] 

14.60–

142.20 

Defect area determined 

via the algorithm, cm2 

68.33±39.39 68.05 [37.20; 

89.25] 

14.30–

139.90 

Area difference 

absolute, cm2 

relative, % 

 

0.98±0.72 

 

0.90 [0.35; 1.35] 

 

0.00–2.30 

0.99±0.02 0.99 [0.98; 0.99] 0.98–1.02 

Maximum curvature 

deviation, mm 

1.89±1.19 1.82 [1.01; 3.01] 0.09–3.89 

 

 

Table 2. Summary performance indicators of the algorithm 
for restoring the lost surface of the skull bones 

Indicator General 

group, 

n=214, 

% 

Models 

without 

artifacts, 

n=194, 

% 

Increase 

in 

metrics, 

% 

Sensitivity 95.3 96.9 1.6 

Specificity 85.5 87.6 2.1 

Good geometric accuracy 79.4 83.5 4.1 

Acceptable geometric accuracy (good to 

satisfactory surface curvature results) 

91.1 93.8 2.7 

 

 

 



  

 

Mishinov SV 
4 of 5 

 Neurosurgery 

  

 

Saratov Medical Journal, 2023. Volume 4. Issue 1 (March). Article CID e0102 www. sarmj.org 
 

To measure the impact of the defect area location on the 
correct determination of reference points and proper 
construction of the surface, we analyzed 3D models where the 
defect was determined correctly and there were no artifacts 
interfering with the construction of the surface (n=188). In 
the case of the defect located outside the temporal region 
(n=61), the implant was constructed well in 59 cases; it was 
unacceptable in one case and satisfactory in one case as well. 
In the case of the defect spreading to the temporal region 
(n=127), the lost surface had good curvilinearity in 101 cases; 
in 18 cases, it was satisfactory; and in 8 cases, it was 
unacceptable. The accuracy of the algorithm based solely on 
good results was 79.5%; with the inclusion of satisfactory 
results, it constituted 93.7%. We established that as the defect 
spread to the area of the skull base, the relative proportion of 
incorrectly identified reference points required for 
reconstructing the surface increased, which led to a decrease 
in good results of the lost surface repair.  

Analysis of the obtained data helped establishing that the 
low location of the defect in the temporal region, rather than 
the presence of artifacts in 3D models of the skull alone, 
increased satisfactory and unacceptable modeling results, 
because in the former case, the algorithm could not correctly 
determine the reference points and, accordingly, generate a 
good geometry of the lost surface (Figure C).  

 

Discussion 

The use of neural networks and machine learning 
approaches in various fields has increased significantly over 
the last decade. A number of studies in various fields of 
medicine grows exponentially every year. Employing neural 
networks in reconstructive neurosurgery is of interest from 
the standpoint of creating an implant for repairing a defect in 
the skull bones. Several studies demonstrated various 
technical aspects of network architecture and training [5-10]. 
A publication by J. Li et al. [11] presented the results of how a 
trained neural network functioned on the skulls of healthy 
people with synthetically generated lesions, implying that the 
developed approach has prospects for use in medical practice. 
C.T. Wu et al. [12] demonstrated a clinical example of the 
repairing a simple convexity defect in the frontal region with 
an implant automatically modeled by a neural network. The 
implant was produced from polymethyl methacrylate by 
casting in a silicone mold. Despite the large number of 
published sources on this topic, we found no data in the 
available literature on direct assessment of the obtained 
outcomes by medical specialists performing such surgical 
interventions. 

In the current study, after training the algorithm on 
models of skulls with synthetic lesions, a number of 
validation experiments were carried out. At the first stage, the 
performance of the algorithm was assessed with the presence 
of the initial model (reference model) of the skull before the 
patient underwent craniectomy. This group included MSCT 
examinations performed prior to surgical interventions in 
patients with traumatic intracranial hematomas and 
meningeal tumors growing into the skull bones. Thus, for 
each patient, there was a pair of skull models: without a 
defect before surgery and with a defect after surgery. The 
results obtained during this stage demonstrated defect 
replacement that was extremely close to the reference model, 

which made it possible to move on to conducting research on 
a larger sample. 

An evaluation of 222 MSCT examinations showed that in 
3.6% of cases (n=8), the algorithm failed to correctly restore 
the lost surface of the skull, which was due to the localization 
features and small size of the defects. Another 9% (n=20) of 
the studies contained artifacts that did not allow the edges of 
the bone defect to be correctly detected, which affected the 
curvilinearity of the restored surface. The presence of 
artifacts in 3D models of the skull after their transfer from 
DICOM format to STL was due to their density resembling 
the density of the bone tissue (+400 HU). The maximum 
accuracy of the algorithm (96.7%) was observed when defects 
were located outside the temporal region, while the surface 
area of the defect did not affect the quality of the resulting 
surface (Figure A). However, in actual clinical practice, the 
vast majority of skull bone defects are the consequences of 
surgical interventions for traumatic brain injury, when 
trephination habitually involves the temporal region. It has 
been proven that the key to effectiveness is maximum 
resection of the temporal bone towards the base of the skull. 
Therefore, an important aspect of further improvement of the 
algorithm is training the neural network to correctly generate 
the lost surface in cases of defects located in lower areas.  

A limitation of our study was the lack of exclusion criteria 
for MSCT studies used to analyze the performance of the 
algorithm. At the same time, the lack of initial data refining 
allowed identifying the causes of unsatisfactory results of 
reconstructing the skull surface. The obtained results made it 
possible to reveal additional requirements for the used 
DICOM data: for precise construction of the surface, they 
must not contain artifacts (drainages, metal bodies) near the 
defect area. Eliminating the effect of a newly formed bone in 
the defect area on the performance of the algorithm was 
possible by connecting an operator between the stages of 
constructing 3D models of the skull and the restored surface. 

To implement the priority areas of high-tech health care 
and the widespread introduction of custom implants, new 
approaches are required to reduce the time spent on their 
modeling. Our study aimed at assessing the effectiveness of 
the developed algorithm based on the work of convolutional 
neural networks demonstrated the high potential of the 
created approaches for their use in a clinical practice. The 
algorithm can be used in medical production for the initial 
modeling of the lost surface of the skull, as well as in medical 
3D printing laboratories at universities and national medical 
research centers for developing skills of modeling custom 
implants. Our findings will also help resolving the issue of 
developing specialized medical software for 3D modeling of 
custom implants used for repairing defects in the skull bones 
[2].  

 

Conclusion 

1. The accuracy of identifying the reference points 
(specificity) on a 3D model of the skull by the algorithm had 
the greatest impact on the ultimate accuracy of repairing the 
lost surface.  

2. The maximum accuracy of the algorithm allowing the 
use of the resulting surfaces without additional processing in 
a 3D modeling environment was achieved in series without 
the presence of artifacts in MSCT (83.5%), as well as with 
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defects that did not extend into the area of the base of the 
skull (79.5%).   

3. Further development of the proposed approach, 
including an increase in training samples with reference 
models and addition of complex defects extending to the base 
of the skull, will improve the accuracy of the algorithm. 
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